Normal modes and coordinates

Liu ruoxi

April 23, 2024

In cartesian coordinates, expanding the potential operator around a point x_0 , the Hamiltonian can be written as

$$\hat{H}(\mathbf{x}) = \sum_{i} -\frac{\hbar^2}{2m_i} \frac{\partial^2}{\partial x_i^2} + V_0 + \sum_{i} \frac{\partial V}{\partial x_i} (x_i - x_{0i}) + \sum_{i,j} \frac{1}{2} \frac{\partial^2 V}{\partial x_i \partial x_j} (x_i - x_{0i}) (x_j - x_{0j}) + \dots$$
(1)

where V_0 is V_{x_0} and the derivatives are evaluated at x_0 . If x_0 is at a minimum energy point, then

$$\frac{\partial V}{\partial x_i} = 0 \quad \forall i. \tag{2}$$

Now use mass-scaled coordinates relative to x_0

$$x_i - x_{0i} \to \frac{1}{\sqrt{m_i}} \tilde{x}_i \Rightarrow \frac{\partial}{\partial x_i} \to \sqrt{m_i} \frac{\partial}{\partial \tilde{x}_i}$$
 (3)

so that the Hamiltonian is

$$\hat{H}(\tilde{\mathbf{x}}) = \sum_{i} \left(-\frac{\hbar^2}{2} \frac{\partial^2}{\partial \tilde{x}_i^2} \right) + V_0 + \sum_{i,j} \frac{1}{2} H_{ij} \tilde{x}_i \tilde{x}_j + \dots$$
 (4)

where H_{ij} is the mass-weighted Hessian

$$H_{ij} = \frac{1}{\sqrt{m_i}\sqrt{m_j}} \frac{\partial^2 V}{\partial x_i \partial x_j} \quad . \tag{5}$$

$$V(\tilde{\mathbf{x}}_{\mathbf{i}}) = V_0 + \frac{1}{2} \sum_{ij} H_{ij} \tilde{x}_i \tilde{x}_j + \dots$$
 (6)

Diagonalize the Hessian matrix

$$H_{ij} = U_{i\alpha} D_{\alpha\alpha} U_{\alpha j}^{\dagger} \tag{7}$$

For the potential operator, we have

$$V(\tilde{\mathbf{x}}_{\mathbf{i}}) = V_0 + \frac{1}{2} \sum_{ij\alpha} U_{i\alpha} D_{\alpha\alpha} U_{\alpha j}^{\dagger} \tilde{x}_i \tilde{x}_j = V_0 + \frac{1}{2} \sum_{\alpha} \left(\sum_i U_{i\alpha} \tilde{x}_i \right) \left(\sum_j U_{\alpha j}^{\dagger} \tilde{x}_j \right) D_{\alpha\alpha} + \dots$$
 (8)

A transformation of coordinates from the original mass-scaled coordinates \tilde{x}_i to a new set of coordinates Q_{α}

$$Q_{\alpha} = \sum_{i} U_{i\alpha} \tilde{x}_{i} \tag{9}$$

Substitute formula 9 into formula 8, we have a new representation of the potential operator that

$$V(\mathbf{Q}) = V_0 + \frac{1}{2} \sum_{\alpha} D_{\alpha\alpha} Q_{\alpha}^2 + \dots$$
 (10)

For the kinetic energy operator, we have

$$T(\tilde{\mathbf{x}}_{\mathbf{i}}) = \sum_{i} \left(-\frac{\hbar^2}{2} \frac{\partial^2}{\partial \tilde{x}_i^2} \right) \tag{11}$$

$$\frac{\partial}{\partial \tilde{x}_i} = \sum_{\alpha} \frac{\partial Q_{\alpha}}{\partial \tilde{x}_i} \frac{\partial}{\partial Q_{\alpha}} = \sum_{\alpha} U_{i\alpha} \frac{\partial}{\partial Q_{\alpha}}$$
(12)

Substitute formula 12 into formula 11, we have a new representation of the kinetic energy operator that

$$T(\mathbf{Q}) = -\frac{1}{2} \sum_{i} \left(\sum_{\alpha} U_{i\alpha} \frac{\partial}{\partial Q_{\alpha}} \right) \left(\sum_{i} U_{i\beta} \frac{\partial}{\partial Q_{\beta}} \right)$$

$$= -\frac{1}{2} \sum_{i\alpha\beta} U_{i\alpha} U_{i\beta} \frac{\partial^{2}}{\partial^{2} Q_{\alpha} Q_{\beta}}$$

$$= -\frac{1}{2} \sum_{\alpha\beta} \left(\sum_{i} U_{i\alpha} U_{i\beta} \frac{\partial^{2}}{\partial^{2} Q_{\alpha} Q_{\beta}} \right)$$
(13)

For the orthogonality of U, we have

$$\sum_{i} U_{i\alpha} U_{i\beta} = \delta_{\alpha\beta} \tag{14}$$

Substitute formula 14 into formula 13, simplify that

$$T(\mathbf{Q}) = -\frac{1}{2} \sum_{\alpha\beta} \delta_{\alpha\beta} \frac{\partial^2}{\partial^2 Q_{\alpha} Q_{\beta}} = -\frac{1}{2} \sum_{\alpha} \frac{\partial^2}{\partial^2 Q_{\alpha}}$$
 (15)

The total Hamiltonian is

$$\hat{H}(\mathbf{Q}) = T + V = V_0 - \frac{1}{2} \sum_{\alpha} \left(\frac{\partial^2}{\partial Q_{\alpha}^2} + Q_{\alpha}^2 D_{\alpha \alpha} \right) + \dots$$
 (16)

Define Q'_{α} as

$$Q_{\alpha}' = \sqrt{\omega_{\alpha}} Q_{\alpha} \tag{17}$$

where ω_{α} is the frequency of the normal mode α . The Hamiltonian can be written as

$$\hat{H}(\mathbf{Q}') = V_0 - \frac{1}{2}\hbar\omega_\alpha \left(\sum_\alpha \frac{\partial^2}{\partial Q_\alpha'^2} + Q_\alpha'^2\right) + \dots$$
 (18)