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In cartesian coordinates, expanding the potential operator around a point x(, the Hamiltonian can be

written as
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where Vj is Vz<o) and the derivatives are evaluated at . If 2y is at a minimum energy point, then
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Now use mass-scaled coordinates relative to xg
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so that the Hamiltonian is
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where H;; is the mass-weighted Hessian
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Diagonalize the Hessian matrix
Hij = Uia DU, (7)

For the potential operator, we have
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A transformation of coordinates from the original mass-scaled coordinates Z; to a new set of coordinates
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Substitute formula 9 into formula 8, we have a new representation of the potential operator that

1 2
+§20;DMQQ+... (10)

Qa



For the kinetic energy operator, we have

T(5%) = Y (J%aa_) (11)
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Substitute formula 12 into formula 11, we have a new representation of the kinetic energy operator that
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For the orthogonality of U, we have

ZUian = 5a6 (14>

Substitute formula 14 into formula 13, simplify that
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The total Hamiltonian is
HQ) =T+V = V—12(8(222+Q ) . (16)
Define @/, as
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where w, is the frequency of the normal mode a. The Hamiltonian can be written as

HQ) =V, - hwa(Zanz+Q2>+”' (18)



